Federal Aviation Administration, DOT - (c) Except as provided in paragraphs (d) and (e) of this section, compliance with the provisions of paragraph (a) of this section must be demonstrated in flight over the acceleration range as follows: - (1) -1 g to +2.5 g; or - (2) 0 g to 2.0 g, and extrapolating by an acceptable method to -1 g and +2.5 g. - (d) If the procedure set forth in paragraph (c)(2) of this section is used to demonstrate compliance and marginal conditions exist during flight test with regard to reversal of primary longitudinal control force, flight tests must be accomplished from the normal acceleration at which a marginal condition is found to exist to the applicable limit specified in paragraph (b)(1) of this section. - (e) During flight tests required by paragraph (a) of this section, the limit maneuvering load factors, prescribed in §§ 23.333(b) and 23.337, need not be exceeded. In addition, the entry speeds for flight test demonstrations at normal acceleration values less than 1 g must be limited to the extent necessary to accomplish a recovery without exceeding $V_{\rm DF}/M_{\rm DF}.$ - (f) In the out-of-trim condition specified in paragraph (a) of this section, it must be possible from an overspeed condition at V_{DF}/M_{DF} to produce at least 1.5 g for recovery by applying not more than 125 pounds of longitudinal control force using either the primary longitudinal control alone or the primary longitudinal control and the longitudinal trim system. If the longitudinal trim is used to assist in producing the required load factor, it must be shown at V_{DF}/M_{DF} that the longitudinal trim can be actuated in the airplane nose-up direction with the primary surface loaded to correspond to the least of the following airplane nose-up control forces: - (1) The maximum control forces expected in service, as specified in §§ 23.301 and 23.397. - (2) The control force required to produce 1.5 g. $\,$ - (3) The control force corresponding to buffeting or other phenomena of such intensity that it is a strong deterrent to further application of primary longitudinal control force. [Doc. No. FAA–2009–0738, 76 FR 75755, Dec. 2, 2011] ## Subpart C—Structure GENERAL ## § 23.301 Loads. - (a) Strength requirements are specified in terms of limit loads (the maximum loads to be expected in service) and ultimate loads (limit loads multiplied by prescribed factors of safety). Unless otherwise provided, prescribed loads are limit loads. - (b) Unless otherwise provided, the air, ground, and water loads must be placed in equilibrium with inertia forces, considering each item of mass in the airplane. These loads must be distributed to conservatively approximate or closely represent actual conditions. Methods used to determine load intensities and distribution on canard and tandem wing configurations must be validated by flight test measurement unless the methods used for determining those loading conditions are shown to be reliable or conservative on the configuration under consideration. - (c) If deflections under load would significantly change the distribution of external or internal loads, this redistribution must be taken into account. - (d) Simplified structural design criteria may be used if they result in design loads not less than those prescribed in §§23.331 through 23.521. For airplane configurations described in appendix A, §23.1, the design criteria of appendix A of this part are an approved equivalent of §§23.321 through 23.459. If appendix A of this part is used, the entire appendix must be substituted for the corresponding sections of this part. [Doc. No. 4080, 29 FR 17955, Dec. 18, 1964; 30 FR 258, Jan. 9, 1965, as amended by Amdt. 23–28, 47 FR 13315, Mar. 29, 1982; Amdt. 23–42, 56 FR 352, Jan. 3, 1991; Amdt. 23–48, 61 FR 5143, Feb. 9, 1996] ## §23.302 Canard or tandem wing configurations. The forward structure of a canard or tandem wing configuration must: